
AOT Lab
Dipartimento di Ingegneria

dell’Informazione
Università degli Studi di Parma

Agent-Oriented
Software Engineering

Federico Bergenti and Paola Turci
{bergenti, turci}@ce.unipr.it

With contributions of Massimo Cossentino, Onn Shehory and Franco Zambonelli

2

Goal of the Lecture

Understand and discuss
What Agent-Oriented Software Engineering (AOSE) is
and why it is important
Key concepts

Overview
Relevant AOSE methodologies
AOSE implementation tools

Suggest interesting research directions

3

Part 1

Key Concepts of
Agent-Oriented Software Engineering

4

What is Software Engineering

Software is pervasive and critical
It cannot be built without a disciplined, engineered,
approach

There is a need to model and engineer both
The development process

• Controllable, well documented, and reproducible ways of
producing software

Software
• Well-defined quality level (e.g., % of bugs and performances)
• Enabling reuse and maintenance

Requires
Abstractions, methodologies and tools

5

Abstractions of
Software Engineering

Software deals with “abstract” entities, having a
real-world counterpart

Numbers, dates, names, persons, documents, ...

In what term shall we model them in software?
Data, functions, objects, agents, …
I.e., what are the abstractions that we have to use to
model software?

May depend on available technologies

6

Methodologies

A methodology for software development is
intended discipline the development

Defines the abstractions to use to model software
Data-oriented, flow-oriented, object-oriented, …
Define the mindset of the methodology

Disciplines the software process
What to produce and when
Which artefacts to produce

7

Tools

Notation tools
To represent the outcome of the software development
phases

• Diagrams, equations, figures, …

Formal models
To prove properties of software prior to development

• Lamba calculus, Petri-nets, Z, ….

CASE tools
To facilitate activities: rapid prototyping, code
generators, …

8

Why Agent-Oriented
Software Engineering?

Software engineering is necessary to discipline
Software systems and software processes
Any approach relies on a set of abstractions and on related
methodologies and tools

Agent-based computing introduces novel abstractions
Requires clarifying the set of necessary abstractions
Requires adapting methodologies and producing new tools

Novel, specific agent-oriented software engineering
approaches are needed

9

What are Agents?

There has been some debate
On what an agent is, and what could be appropriately
called an agent

Two main viepoints
The (strong) artificial intelligence viewpoint

• An agent must be, proactive, intelligent, and it must conversate
instead of doing client-server computing

The (weak) software engineering viewpoint
• An agent is a software component with internal (either reactive

or proactive) threads of execution, and that can be engaged in
complex and stateful interactions protocols

10

What are Multiagent Systems?

Again….
The (strong) artificial intelligence viewpoint

• A multiagent system is a society of individual that interact by
exchanging knowledge and by negotiating with each other to
achieve either their own interest or some global goal

The (weak) software engineering viewpoint
• A multiagent system is a software systems made up of multiple

independent and encapsulated loci of control (i.e., agents)
interacting with each other in the context of a specific application
viewpoint

11

The Software
Engineering Viewpoint

We commit to it because
It focuses on the characteristics of agents that have
impact on software development

• Concurrency, interaction, multiple loci of control
• Intelligence can be seen as a peculiar form of control

independence
• Conversations can be seen as a peculiar form of interaction

It is much more general
• Does not exclude the strong AI viewpoint
• Several software systems (even if never conceived as agents-

based one) can be indeed characterised in terms of weak multi-
agent systems

12

Agent-Oriented Abstractions

The development of a multiagent system should
fruitfully exploit abstractions coherent with the
above characterisation

Agents, autonomous entities, independent loci of
control, situated in an environment, interacting with each
others
Environment, the world of resources agents perceive
Interaction protocols, as the acts of interactions between
agents

13

Getting Deeply into AOSE…

For the definition of a suitable methodology for
multiagent systems development

There is need of better characterizing agents, multiagent
systems, and the associated mindset of abstractions

• How can we model agent autonomy, situatedness and sociality

There is need of understanding how the “traditional”
cascade software engineering process maps into agent-
oriented software development

• What are analysis and design in AOSE?

14

Characterizing Agents

No agreement on the definition of agent
Historically, two approaches to characterize
“intelligent”, i.e., rational, agents and multiagent
systems

Operational, agents and multiagent systems are
systems with particular features, i.e.

• Particular structure
• Particular behaviour

Based on system levels, agents and multiagent systems
are new system levels

These approaches are complementary

15

Operational Characterization

Particularly suited for rational agents because it is
based on logics
Rational agents (Wooldridge)

Described in terms of a belief, desires and intention
Beliefs, desires and intentions are structured so to make
the agent behave rationally
Independent from the internal agent architecture
The whole work on LORA devoted to it

16

Operational Characterization

Simple control loop of a rational agent

1 forever
2 sense the environment
3 update the model of the environment
4 deliberate for a new goal
5 means-end reason to obtain a plan

to achieve the goal
6 execute the plan

17

Operational Characterization

The operational characterization
Draws from well-founded logics
Does not depend on the internal architecture of the
agents

This approach has, at least, two problems
Does not justify reasonably why we should adopt agents
instead of other technologies
Grounds rationality on the axioms of a logic
Could not make any accepted agreement

18

System Levels

System level
Structured group of concepts that support the
definition of an engineered model of a system

Historically, introduced to hide details in hardware
design, e.g.

A logic gate level design does not care about transistors
A register transfer level design does not care about
gates

System levels are levels of abstraction

19

System Levels

A system level is composed of
Medium, set of atomic concepts that the system level
processes
Components, atomic concepts that we use to assembly
the system
Composition laws ruling how components can be
assembled to form a system
Behaviour laws determining how the behaviour of the
system depends on

• The behaviour of the single components
• The architecture of the system

20

Example: Logic Gate Level

E.g., input and output of logic gates are connected
through lines

Composition Law

Single-bit signalsMedium

The laws for composing truth tables of logic gatesBehaviour Law

Logic gates, linesComponents

Unit of a processor that manipulates registersSystem

Logic Gate Level ElementElement

21

Knowledge Level

At the beginning of the 80’s the AI had the problem
of defining knowledge

Introduced a new system level, called knowledge
level, to provide a scientific definition of knowledge
(Newell)

The knowledge level is used to model agents, i.e.,
rational systems that process knowledge

22

Knowledge Level

KnowledgeMedium

Principle of rationalityBehaviour Law

Goal, action, bodyComponents

AgentSystem

Knowledge Level ElementElement

In order to model an agent, we need
A body, i.e., a means for the agent to interact with its environment
A set of actions the agent can perform on its environment. Each
action has pre- and post-conditions
A set of goals

23

Knowledge Level

The knowledge level
Relies only on the principle of rationality to account for
the behaviour of the agent
Focuses on modelling one single agent

Today, we build systems in terms of
Agents that may not be proved to be rational at all
Interacting agents that are the unit of reuse and of
encapsulation

24

Social Level

Obligation, influence mechanismsMedium

Principle of organizational rationalityBehaviour Law

Agent, organizational relation, interaction channel,
dependency

Components

OrganizationSystem

Social Level ElementElement

Jennings introduced the social level on top of the
knowledge level
It allows to create organizational models of multiagent
systems

25

Social Level

The social level
Moves all design towards social issues, does not care of
how to design each agent
Cannot describe emerging organizations

Best practice of architectural patterns suggests
that organization is not enough to design a system,
e.g., we need

Connectors for flexible composability
Contracts to support verifiable composability

26

Agent Level

Representation of belief, goal and capabilitiesMedium

Principle of rationalityBehaviour Law

Belief, goal, action, role, interaction ruleComponents

Multiagent systemSystem

Agent Level ElementElement

Between the knowledge and the social level
Allows to model multiagent systems that

Rely on message passing and on the speech-act theory
Exploits the possibilities of the FIPA infrastructure

27

Agents and Other Technologies

Since FIPA, multiagent systems are often
compared with object-oriented systems

Both rely on encapsulated units that interact
Both rely on message passing
For both we can define an architecture
… and many other similarities

The comparisons found in the literature are often
poor

28

“Agents can say…”

Use of autonomy to draw a line between agents
and objects (Parunak)

“Agents can say go”, agents can take the initiative
“Agents can say no”, agents can refuse to perform a
requested service

These seems relevant differences with object-
oriented method invocation, but

Active objects have a long and honored history
Refusal is not useful per se

29

Comparing the Meta-Models

NoneClassesType system

Pre-/post-conditions

Goal delegation

Composability

Exchange of parts of the
knowledge base

Knowledge base

Agents

Task delegationDelegation

Inheritance, mostly for
composability

Reuse

Design by contractResponsibility

Request for service with certain
parameters

Messaging

Properties and valuesState

ObjectsElement

30

Comparing Granularity

Objects have a highly dynamic lifecycle, they are
Created just for serving a request
Cloned just for performance reasons
Introduced to promote reusability
…often created and destroyed

Agents are more coarse grained
Reason on their knowledge bases
Publish their capabilities to a DF
…they are rarely created and destroyed

31

Part 2

Overview of Agent-Oriented
Software Engineering Methodologies

32

What is a Methodology ?

A methodology is…
a collection of methods for solving a class of problems
a body of methods, rules, and postulates employed by a discipline: a
particular procedure or set of procedures

But…when referring to software
A methodology is the set of guidelines for covering the whole lifecycle of
system development both technically and managerially

• full lifecycle process
• comprehensive set of concepts and models
• full set of techniques (rules, guidelines, heuristics)
• fully delineated set of deliverables
• modeling language
• set of metrics
• quality assurance
• coding (and other) standards
• reuse advice
• guidelines for project management

33

Agent-Oriented Methodologies

There is need for agent-oriented methodologies
Centered around specific agent-oriented abstractions
The adoption of OO methodologies would produce mismatches

• Classes, objects, client-servers: little to do with agents

Each methodology may introduce further abstractions
Around which to model software and to organize the software
process

• E.g., roles, organizations, responsibilities, belief, desire and intentions,
…

Not directly translating into concrete entities of the software system
• E.g. the concept of role is an aspect of an agent, not an agent

34

Agent-Based Analysis

Analysis aims to understand, at least
What are the main actors interacting with the system
How the system interacts with these actors
What the system is supposed to do

The system is a closed entity and we do not look
into it to avoid anticipating design issues and
decisions

Where do agents enter the picture?

35

Agent-Based Analysis

We associate agents with the entities of the
scenarios we are analyzing
Then, we associate accordingly

Roles, responsibilities and capabilities
Interaction patterns between agents

This provides a neutral view of the problem.

Methodologies, e.g., Tropos and GAIA, do not use
the word agent to identify analysis-phase entities

36

Agent-Based Design

Design aims to engineer, at least
What are the main components interacting within the
system
What are the responsibilities and the capabilities of each
component in the system
How the components interact to implement the system,
i.e., the architecture of the system

Where do agents enter the picture?

37

Agent-Based Design

We associate agents with the components we use
to build the system
Then, we associate accordingly

Roles, responsibilities and capabilities
Interaction patterns between agents

Differently from analysis: we need to choose on
which agents to use and how they interact

Agents at the design phase can have nothing to do
with agents at the analysis phase

38

Agent-Oriented Methodologies

Several methodologies and approaches for designing MASs exist in literature.
In general they tackle different aspects of the MAS and in some cases they are
quite complementary:

Gaia
• Encourages a developer to think of building agent-based systems as a process of

organisational design.
TROPOS

• It is founded on the concepts of goal-based requirements adopted from the i* and GRL
(Goal-oriented Requirements Language). Its distinguishing feature is the emphasis on
requirements analysis

Prometeus
• It focuses mainly on the internal agent architecture; it is basically a methodology for

designing BDI agent systems
ADELFE

• It is a methodology for the development of adaptive multiagent systems
MESSAGE

• It covers most of the fundamental aspects of the MAS development, focusing mainly on
analysis and high-level design. The main objective was to combine the best features of the
pre-existing approaches, but … the result was a too complex and farraginous methodology.

PASSI
• It is a step-by-step requirement-to-code methodology. Integrates design models and

concepts from both object oriented software engineering and artificial intelligence
approaches

… and many others

39

Gaia Methodology

Gaia is appropriate for the development of systems with the
following main characteristics:

Gaia is not intended for systems that admit the possibility of true
conflict.
Gaia makes no assumptions about the delivery platform;
The organisation structure of the system is static, in that inter-agent
relationships do not change at run-time.
The abilities of agents and the services they provide are static, in
that they do not change at run-time.
The overall system contains a comparatively small number of
different agent types (less than 100).

40

Case Study

Auction agent

1.The configurator: a GUI component, enables the user to
control and monitor the agent's activity
2.The parser: translates retrieved information into an internal
structure
3.The bidder: submits bids according to buying strategy.
Implements two stages, bid and confirmation
4.The manager: controls the agent's activity, monitors the
auction site, activates the parser, determines the next bid,
activates the bidder and terminates the agent's purchasing
activity

41

Gaia Disciplines

 GAIA

<<Discipline>>
Requirements

Capture

<<Discipline>>
Analysis

<<Discipline>>
Design

42

GAIA Disciplines

Requirements capture phase are considered
independent of the paradigm used for analysis and
design

For this reason Gaia does not deal with the requirements
capture phase

The analysis phase consists of the following models:
Role definition (permissions, responsibilities and protocols)
Interaction model (used for protocol description)

The design phase consists of the following models:
Agent model
Service model (input, output, pre and post condition)
Acquaintance model

43

Gaia Work Products

- Work products dependency diagram

Agent Model

Services Model

Acquaintance
Model

Roles Model Interactions
Model

Requirements
Statement

Prototypical
Roles Model

Analysis

Design

Gaia
Scope

44

GAIA – Role Model

Protocols, state the interactions of the role with other roles. In addition
state the internal activities of the role
Permissions, state what resources may be used to carry out the role
and what resource constraints the role's executor is subject to
Responsibilities. determine the functionality of the role. This functionality
is expressed in terms of safety and liveness properties

- Template for role schemata

45

GAIA – Role Model

Role Schema: Manager (MA)

Description:
 Controls the auction agent activities

Protocol and Activities:
 CheckAuctionSite , ActivateParser ,CheckForBid , Bid

Permission:
 reads supplied ItemNumber // the item number in the auction site
 AuctionDetails // the auction information

Responsibilities:
 Liveness:
 Manager = (CheckAuctionSite .ActivateParser .CheckForBid)+[Bid]
 Saftey :
 true

- The Manager role scheme

46

GAIA – Interaction Model

AuctionAgent AOM

supplied ItemNumber input

AuctionDetails output

CheckAuctionSite

Manager AuctionSite
Manager

Connect to the auction site
for auction status and

information

Protocol name

Sender Receiver

Description

AuctionAgent AOM

supplied ItemNumber input

AuctionDetails output

CheckAuctionSite

Manager AuctionSite
Manager

Connect to the auction site
for auction status and

information

Protocol name

Sender Receiver

Description

- The Interaction Model of the CheckAuctionSite protocol

47

GAIA – Design Phase Models

AuctionSite

AuctionAgent

 AuctionSite Auction Agent

1

AuctionSiteManager Parser Bidder Configuratorr Manager

1

- The Acquaintance Model

- The Service Model

Service Input Output Pre-condition Post-condition
Get auction details ItemNumber AuctionDetails true true

Validate user User Exists true (exists=true) ∨ (exists=false)

Bid User, ItemNumber,
Price

Success user exists (success=true) ∨ (success=false)

- The Agent Model

48

Gaia v.2

First version
Designed to handle small-scale, closed agent-based systems
Modelled agents, roles, interactions
Missed in modelling explicitly the social aspects of a MAS

Official extension of Gaia
Thought for open agent systems

• Significantly extends the range of applications to which Gaia can be
applied

Focused on the social organization of the system
• Three further abstractions, which can hardly be expressed in terms of

individual roles or individual interaction protocols
▫ Environmental model
▫ Organizational rules
▫ Organizational structures

49

Environmental Model

The environment elected to a primary analysis and
design abstraction

Represented in terms of abstract computational
resources, such variables or tuples, made available to
the agents for sensing, for effecting or for consuming

• The simplest form can be a list of all the entities and resources a
MAS may interact with, restricting the interactions by means of
the permitted actions
▫ Es. In a manufacturing pipeline the resources of interest can be the

items being produced and made flow in each of the pipeline’s “n”
stages. The environmental model can be:

changes flux[i], i=1,n //number of items flowing in each stage of the pipeline

50

Organizational Rules

Considered as responsibilities of the organization as a
whole

In an open system, the organization should be able to enforce its
internal coherency
Certain requirements are mostly simple expressed as global
organizational rules rather than being replicated for each role in the
organization

Can be expressed by making use of the same formalism
adopted for specifying liveness and safety rules for roles

Express constraints on the execution activities of roles and
protocols

• Es: In a manufacturing pipeline, the correct management of the pipeline requires
each of the stage roles to be played only once. This can be expressed by the
safety rule:

R1,R = (STAGE[1], STAGE[2], . . . , STAGE[N])

51

Organizational Structures

- Manufacturing pipeline: collective of peers organization - Manufacturing pipeline: hierarchical organization

The role model may define the organizational structure in
an implicit way
But …
the structure of a MAS is more appropriately derived from
the explicit choice of an appropriate organizational structure

Organizational structures viewed as first-class abstractions
• Define the topology and the control regime

Opportunities for re-use and exploitation of organizational-patterns

52

Gaia v.2 - Work Products

Gaia v.2
Scope

Analysis

Architectural
Design

Detailed
Design

53

Standardization Activities - FIPA

FIPA is a world-wide, non-profit association of
companies and organizations
(http://www.fipa.org).

At the beginning of the year 2003 two new Technical
Committees were established, belonging to the
software engineering area:

FIPA Modelling TC

FIPA Methodology TC

Several researchers, already working in those areas,
converged in these Technical Committees with the
purpose of preparing the future standard in their
specific field

54

FIPA Modeling TC

This TC was established to draw the specifications for the
future FIPA agent-based unified modelling language.

Its work started from the existing experiences of UML and AUML.
The main objective is to facilitate advances in the state of the art of
agent-based modelling.
The TC activities are in the first phase of a multiphase effort. The
first phase is devoted to defining three diagrams:

• Class diagram superstructure metamodel (basic foundational elements
required in multi-agent systems)

• Class diagram
• Interaction diagrams

In addition, the TC participants have identified other modelling
areas useful for representing and specifying agent-based systems

55

UML

Extension Mechanisms
Constraint - is a semantic relationship among model elements
that specifies conditions and propositions that must be
maintained as true; otherwise, the system described by the
model is invalid
Stereotype - is a new class of metamodel element that is
introduced at modelling time
Tag - a tag definition specifies the tagged values that can be
attached to a kind of model element
Comment - is a text string attached directly to a model element

56

FIPA Modeling -
Agent Class Diagram

The FIPA AUML Agent Class diagram is based on
UML class diagram

UML class diagram:
“A diagram that shows a collection of declarative (static)
model elements such as classes, types, and their
contents and relationships” [Booch, 1999]
Due to the relative complexity of agent design and the
many differences that exist between an agent and an
object, FIPA AUML class diagram extends UML class
diagram to cover needs for agent design

• FIPA AUML class diagram describes the agents and their
architectures

Very preliminary form!!

57

FIPA Modeling:
Sequence Diagram

A diagram that shows agent interactions arranged in time
sequence. In particular, it shows the agents participating in
the interaction and the sequence of messages exchanged
Two dimensions:

Vertical dimension represents the time ordering
Horizontal dimension represents different roles or agents playing
specific roles.

Based on UML 2.0
More structured than previous AUML sequence diagram
(graphical) notation (lack of semantics)
Still in draft form!

58

Graphical Notation
• Defines the frame of the sequence diagram. It

contains the message sequence, the agent role,
and the constraints on the interaction

agentID: agentRole/agentGroup • Lifelines shape the presence of agents in interaction.
In Fig. is reported the complete form for the label: an
agent identifier, a role and the group of the agent.

sd Protocol name

• The splitting operator is written inside the “snipped”
corner pentagon. It must be alternative, option,
break, parallel, loop ... A dashed vertical line
separates each path from others

operator

• Termination; the message path is stopped after this
operator

59

FIPA Contract Net Protocol

60

Sequence Diagram - Example

61

Method Engineering

From a quick overview of the major methodologies for the
development of MASs, a crucial question arises:

“Can we have a universal methodology that is suitable for
every problem domain?”

… the answer is probably “NO!”

The best and feasible solution could be for developers to
compose suitable methods for their problem domains and
development environments, using phases or models or
elements coming from different methodologies.

In the the object-oriented community the need for systematic
principles to develop situation-specific methods has led to the
emergence of the method engineering

62

FIPA Methodology TC

Objective: identifying a methodology for the development of
MAS that may fit the greatest number of needs.

Based on the method engineering, it consists in the definition of a
sort of meta-methodology that could be instantiated for each
specific problem.

• The TC aims at collecting experiences coming from the existing
contributions and re-organize them at a meta-model level.

Goals:
• Creation of the meta-model, It is necessary to formally represent

method fragments in order to store them in the method base
• Identification of the method base architecture
• Collection of method fragments, the repository will be initially

populated with method fragments extracted by the most diffused
methodologies

• Description of techniques for method integration

63

MAS Meta-Model

Design a system ≅ Instantiate a meta-model
OO context - design rely on a common denominator

• Universally accepted concept of object and related meta-model
of object-oriented systems

AO context - to date, no common denominator
• Each methodology has its own concepts and system structure

In the agent world
the meta-model is the critical element

when applying the method engineering paradigm

64

Part 3

Agent-Oriented Tools

65

Agent-Oriented Tools

Software engineering requires tools to
Represent software

• E.g., interaction diagrams, E-R diagrams, …

Verify properties
• E.g., Petri nets, formal methods, …

Agent-oriented software engineering requires
Specific agent-oriented tools

• E.g., UML is not suitable to model agent systems and their
interactions

66

AUML

Agent Unified Modeling Language is based on
UML

Revised by FIPAModelingTC

AUML is not a language yet, it is a proposal

Extended with the following
Organized special agent class
New concept of role
New Agent Interaction Protocol Diagrams

67

agent-class-name / role-name1,
role-name2, …
state-description

actions

methods

agent-head-
automata-name

[constraint] society-name

capabilities, service descriptions,
supported protocols

CA-1/
protocol

CA-1/
protocol

CA-2/
protocol

not-under
-stood

CA-2/
protocol

default

AUML – Agent Notation

68

CA-1/protocol

«actions» +methods-a()
«methods» +methods-m()

«state-description» -fields

«agent»
agent-class-name / role-name1, role-name2,

...

default

CA-2/protocol CA-2/protocol

default

CA-1/protocol

[constraint]
society-name

capabilities,service
description,supported
protocols

AUML – Agent Notation

69

Agent Interaction Protocols

70

AUML – Extensions

Agent Interaction Protocol
Layered protocol
Nested protocol
Interleaved protocol

Extending the behavioral diagrams to be fitted to
the concept of role

71

AUML – Knowledge Structure

-bidStep : float
-itemNumber : int
-monitoringFrequency : int
-privateMaximalPrice : float
-userID : String
-userPassword : String

UserInfo
-bidStep : float
-closingDate : Date
-itemNumber : int

AuctionInfo

-price : float
-user : String

LeadingOffer

-name : String

Strategy

72

AUML – System Structure

Inform/FIPA-
Aution

«actions» +parse()
«actions» +bid()
«actions» +search()
«actions» +decideBidding()

«state-description» -winningStatus
«state-description» -currentActivity
«state-description» -strategy

«agent»
AuctionAgent/Trader

reject-proposal/
FIPA-Auction propose/FIPA

-Auction
accept-proposal
/FIPA-Auction

73

AUML – Agent Interaction
Protocol

refuse

Item Number

Auction
information

:AuctionAgent/Trader :AuctionSiteAgent/Manager

request

sd FIPA Request Protocol

alternative

alternative

X
not-understood

X
agree

failure

inform-done:inform

inform-result:inform

74

Issues in Implementing
Agents and Multiagent Systems

How can we move from agent-based design to
concrete agent code?
Methodologies should abstract from

Internal agent architecture
Communication architecture
Implementation tools

However, depending on tools the effort from
design to implementation changes

It depends on how much abstractions are close to the
abstractions of agent-oriented design

75

Implementing Agents

We have two categories of tools to implement
agents

Object-oriented tools: are very much related to the
object-oriented approach, e.g., frameworks
BDI toolkits: are based on the BDI model

The choice of the tool to adopt is hard and there is
no general answer

Performances
Maintenance
…and many other issues

76

Object-Oriented Tools: JADE

JADE (Java Agent DEvelopment
framework) implements a FIPA
platform. It

Is distributed across the network in
terms of containers
Provides management facilities,
e.g., RMA
Provides advanced development
facilities, e.g., Sniffer

The agent architecture is based on
behaviours that implement the tasks
of the agent

One agent runs in one thread
Cooperative scheduling of
prioritized behaviours

Different type of behaviours, e.g.
FSM
Cyclic

77

Example – CD Seller
import musicShopOntology.*;
import ecommerceOntology.*;
…other imports
public class CDSeller extends Agent {

…declare private variables
protected void setup() {
…setup language and ontology
…create initial knowledge base
addBehaviour(new HandleRequestBehaviour(this));

}

class HandleRequestBehaviour
extends CyclicBehaviour {
public HandleRequestBehaviour(Agent a) {
super(a);

}
public void action() {
ACLMessage msg = receive(MessageTemplate.
MatchPerformative(ACLMessage.REQUEST));

try {
ContentElement ce =
manager.extractContent(msg);

Sell sell = null;
AgentAction toNotify = null;

if (ce instanceof Sell) {
sell = (Sell) ce; toNotify = sell

} else { …unknown action }

addBehaviour(new InformDoneBehaviour(
myAgent, toNotify));

} catch(Exception e) { e.printStackTrace(); }
}

}

class InformDoneBehaviour
extends OneShotBehaviour {
private AgentAction act;

public InformDoneBehaviour(Agent a, AgentAction
act) {
super(a); this.act = act;

}

public void action() {
try {
ACLMessage msg = new
ACLMessage(ACLMessage.INFORM);

AID receiver = new AID(receiver, false);

msg.setSender(getAID());
msg.addReceiver(receiver);
msg.setLanguage(codec.getName());
msg.setOntology(ontology.getName();
Done d = new Done(act);

manager.fillContent(msg, d);
send(msg);

} catch(Exception e) {
e.printStackTrace();

}
}

}

78

BDI Toolkits: ParADE

ParADE (Parma Agent Development Environment)
is a toolkit for the development of BDI FIPA agents

Agent level
Agents are atomic components
UML is used to build models of single agents and of the
multiagent system

Object level, exploits the generated code
Each agent is an object-oriented system
ParADE provides is a framework on top of JADE

79

ParADE – Characteristics

ParADE agents
Integrate reactive and goal-directed behaviours to balance
autonomy and efficiency
Exploit the FIPA ACL with a minimalist semantics

ParADE generates Java code from
Ontology diagram, models the part of the ontology that support the
communication
Architecture diagram, defines the architecture and the interaction
protocols

80

Example – Song Seller
…ParADE imports
public class Shop extends ShopAgent {

protected void init() {
…set the agent model
Agent anyAgent = new AgentVariable("y");
Song anySong = new SongVariable("w");

// Plans to achieve intentions
// If 'anyAgent' requests for a song and the song is available, then execute 'ActionBody‘
plan(available(me, anySong), // precondition

done(sell(anyAgent, anySong)), // intention to achieve
new ActionBody() { // the action to perform to achieve the intention
public void body(Goal g) {
Done done = (Done)g;
Sell sell = (Sell)done.getAction();

sell.perform();

forget(intend(sell.getAgent(), done));
achieved(done);

}
});

Song OneHeadlight = new ConcreteSong("One Headlight", 1000);
believe(available(me, OneHeadlight));

ConcreteAgent receiver = new ConcreteAgent(receiver);
schedule(inform(receiver, available(me, OneHeadlight)));

}
}

81

CASE Tools: PASSI Toolkit

PASSI is a step-by-step requirements-to-code method for developing
multiagent

integrates design models and philosophies from both object-oriented
software engineering and MAS using UML notation

The modeling language is an extension of UML

PASSI is conceived to be supported by PTK, an agent-oriented CASE
tool

The functionalities of PTK include:
• Automatic (total or partial) compilation of some diagrams

• Automatic support to the execution of recurrent operations

• Check of design consistency

• Automatic compilation of reports and design documents

• Access to a database of patterns
• Generation of code and Reverse Engineering

82

PASSI
(Process for Agent Societies Specification and Implementation)

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Protocols
Description

Agent Society Model

Initial Requirements

Agents
Identification

Domain Req.
Description Multi-Agent

Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

New Requirements

Code Model

Code
Completion

Code
Completion

Deployment Model

Deployment
Configuration

Communication
Ontology

Description

Domain
Ontology

Description
Roles

Description

83

PTK - Sample

Agent Identification Diagram automatically composed by the tool
The designer creates new agents and select their use cases operating in
the Domain Description diagram

84

PTK - Sample

85

PTK - Sample

Starting from the Domain Ontology Description diagram, PTK exports
the RDF description of the ontology

86

PTK - Sample

TLPlanner
robot : RobotPosition
robotEng : Eng
activeGrid : Grid
path : Path
envMatrix : EnvironmentMatrix

FirstLocalization()
SLListener()
MyGridInitiator()
MyPositionInitiator()
Planner()
SettingParameters()
TLDeadlockInform()

<<Agent>>
SensorReader
activeGrid : Grid

ResponderGrid()
setup()

<<Agent>>

engController
robot : RobotPosition
robotEng : Eng

Mover()
MyPositionResponder()
OdometryLocalizer()
SetParameters()
FirstLocalization()
setup()
VisionLocalizer()

<<Agent>>
Environment

Agent

Tasks

Communications

Knowledge

Multiagent Structure Definition Diagram automatically compiled by the
tool

87

Implementing Multiagent
Systems

Inter-agent implementation aspects are orthogonal
to intra-agent ones

Given a set of agents
• With internal architecture
• With specified interaction patterns

How can we glue them together?
• Letting agents know each other

How to enable interactions?
• Promoting spontaneous interoperability

How to rule interactions?
• Preventing malicious or self-interested behaviours?

88

Multiagent Infrastructures

Enabling and ruling interactions is mostly a matter
of the infrastructure

The middleware supporting communication and
coordination activities

Not simply a passive layer
But a layer of communication and coordination services

• Actively supporting the execution of interaction protocols
• Providing for helping agents move in unknown worlds
• Providing for proactively controlling, and possibly influencing

interactions

89

Communication Infrastructure

Agent in a multiagent system interact with each
other, requiring

Finding other agents
• Directory services in the infrastructure keep track of which

agents are around, and what are their characteristics (e.g.,
services provided)

Re-routing message
• Facilitator agents (parts of the infrastructure) can receive

messages to be delivered to agents with specific characteristics,
and re-route them

Control on ACL protocols
• The execution of a single protocol can be controlled in terms of

a finite state machine

90

Example of Communication
Infrastructures: JADE (1)

Implements a FIPA platform with all necessary services, e.g., DF
JADE

Is distributed across the network in terms of containers
Provides management facilities, e.g., RMA
Provides advanced development facilities, e.g., Sniffer

91

Example of Communication
Infrastructures: JADE (2)

Interaction protocols are
the FIPA way to manage
interactions
JADE provides support for
FIPA generic interaction
protocols, e.g.

FIPA Contract net
FIPA English and Dutch
auctions

JADE implements
interaction protocols as
FSM behaviours

92

Features and Limitations of
Communication Infrastructures

There is not application intelligence in the
infrastructure

The service provided are
• Of a very general-purpose nature
• Not re-configurable to meet the need of specific applications

There is no global orchestration
The only proactive control is on individual protocols

• There is no way of controlling and influencing the global
behaviour of a multiagent system

• How to control self-interested behaviour, unpredictable
dynamics, programming errors?

93

Software Engineering with
Communication Infrastructures

All application problems are to be identified and designed in terms of
Internal agent behaviours and inter-agent interaction protocols
These include, from the intra-agent engineering viewpoint

• Controlling the global interactions
• Controlling self-interested behaviours

Advantages
All in the system is an agents
The engineering of the system does not imply the engineering of the
infrastructure
A standard has already emerged (FIPA)

Drawbacks
The design is hardly re-tunable
Global problems spread into internal agents’ code

AOT Lab
Dipartimento di Ingegneria

dell’Informazione
Università degli Studi di Parma

Thank You!

Questions?
Comments?

Ideas?

AOT Lab
Dipartimento di Ingegneria

dell’Informazione
Università degli Studi di Parma

Addendum

Selected References

96

Selected References

Introductory to Agents and Multiagent Systems
A. Newell, “The Knowledge Level”, Artificial Intelligence, 18(1):87-127, 1982.
P. Wegner, “Why Interaction is More Powerful than Algorithms”, Communications of
the ACM, 40(5):80–91, 1997.
M. Wooldridge, “Reasoning About Rational Agents”, MIT Press, 2000.
M. Wooldridge, N. Jennings, “Intelligent Agents: Theory and Practice”, The
Knowledge Engineering Review, Vol. 10, No. 2, 1999.
D. Chess, C. Harrison, A. Kershenbaum, “Mobile Agents: are They a Good Idea?”,
Mobile Object Systems, Lecture Notes in Computer Science, No. 1222, Springer-
Verlag (D), pp. 25-45, February 1997.
V. Parunak, “Go to the Ant: Engineering Principles from Natural Agent Systems”,
Annals of Operations Research, 75:69-101, 1997.
N. R. Jennings, "An Agent-Based Approach for Building Complex Software System",
Communications of the ACM, 44(4):35:41, 2001.

97

Selected References

Introductory to AOSE
N.R. Jennings, “On Agent-Based Software Engineering”, Artificial Intelligence,
117:227-296, 2000.
N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, B. Odgers, “Autonomous
Agents for Business Process Management”, Int. Journal of Applied AI, Vol. 14 (2),
pp. 145-189, 2000.
M. J. Wooldridge and N. R. Jennings, "Software Engineering with Agents: Pitfalls
and Pratfalls", IEEE Internet Computing, Vol.3, No. 3, May-June 1999.
Y. Shoham, “An Overview of Agent-Oriented Programming”, in J. M. Bradshaw,
editor, Software Agents, pages 271–290. AAAI Press / The MIT Press, 1997.
K. Siau and M. Rossi, “Evaluation of Information Modeling Methods – A Review”,
Proceedinga 31st Annual Hawaii International Conference on System Sciences, pp.
314-322, 1998.
F. Zambonelli, N. Jennings, M. Wooldridge, “Organizational Abstractions for the
Analysis and Design”, 1st International Workshop on Agent-oriented Software
Engineering, LNAI No. 1957, Springer, 2001.

98

Selected References

Surveys on Methodologies
C. Iglesias, M. Garijo, J. C. Gonzales, “A Survey of Agent-oriented Methodologies”,
Intelligent Agents V, LNAI No. 1555, 1999.
M. Wooldridge, P. Ciancarini, “Agent-Oriented Software Engineering”, in Agent-
Oriented Software Engineering, LNCS No. 1957, 2001.
O. Shehory and A. Sturm, “Evaluation of Modeling Techniques for Agent-Based
Systems”, Proceedings of The Fifth International Conference on Autonomous
Agents, pp. 624-631, 2001.

The GAIA Methodology
M. Wooldridge, N. Jennings, D. Kinny,”The Gaia Methodology for Agent-Oriented
Analysis and Design”, Journal of Autonomous Agents and Multi-agent Systems, 3(3),
2000.
F. Zambonelli, N. Jennings, M. Wooldridge, “Organizational Rules as an Abstraction
for the Analysis and Design of Multiagent Systems”, Journal of Software and
Knowledge Engineering, 11(3), 2001.
F. Zambonelli, N. Jennings, M. Wooldridge, “Developing Multiagent Systems: the
Gaia Methodology”, ACM Transactions on Software Engineering and Methodology,
12(3):417-470, July 2003

99

Selected References

Other Relevant Methodologies
P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, “A Knowledge
Level Software Engineering Methodology for Agent Oriented Programming”,
Proceedings of the 5th International Conference on Autonomous Agents, Montreal
(CA), June 2001.
G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon, P. Kearney,
J. Stark, P. Massonet, “Agent Oriented Analysis using MESSAGE/UML”, 2nd

International Workshop on Agent-Oriented Software Engineering, LNCS No. 2222,
Springer-Verlag, pp. 119-135, 2001.
M. Cossentino, C. Potts, “A CASE tool supported methodology for the design of
multi-agent systems”. In Proc. SERP'02 - June 24 - 27, 2002 - Las Vegas (NV),
USA
M. Cossentino, “Different Perspectives in Designing Multi-Agent System”, AgeS’02
(Agent Technology and Software Engineering) Workshop at NodE’02, Erfurt,
Germany, October 2002
S. A. DeLoach, M. F. Wood, Cl. H. Sparkman, “Multiagent Systems Engineering”,
The International Journal of Software Engineering and Knowledge Engineering, Vol.
11 (3), pp. 231-258, 2001.

100

Selected References

AUML
B. Bauer, J.P. Muller, J. Odell, “Agent UML: A Formalism for Specifying Multiagent
Software Systems”, The International Journal of Software Engineering and
Knowledge Engineering, Vol. 11 (3), pp. 207-230, 2001.
B. Bauer, “UML Class Diagrams: Revisited in the Context of Agent-Based
Systems”, Proceedings of Agent-Oriented Software Engineering (AOSE),pp.1-8,
2001.

FIPA
FIPA Modeling Technical Committee – Home Page – Available at
http://www.fipa.org/activities/modeling.html
FIPA Methodology Technical Committee – Home Page – Available at
http://www.fipa.org/activities/methodology.html

101

Selected References

Multiagent Systems Infrastructures
F. Bellifemine, A. Poggi, G. Rimassa, “Developing Multi-Agent Systems with a FIPA-
Compliant Agent Framework”, Software Practice and Experience, 31:103–128, 2001.
S. Poslad, P. Buckle, and R. Hadingham, “The FIPA-OS Agent Platform: Open
Source for Open Standard”, available at http://fipa-os.sourceforge.net.
P. Busetta, R. Rönnquist, A. Hodgson, A. Lucas, “JACK Intelligent Agents:
Components for Intelligent Agents in Java”, Agentlink News Letter, 1999.
P. Ciancarini, A. Omicini, F. Zambonelli, “Coordination Technologies for Internet
Agents”, Nordic Journal of Computing, 6(1), 2000.

102

Selected References

