Grid Environment based on Agent Services

A. Boccalatte, S. Fazzari, S. Gatto, A. Grosso, C. Vecchiola I.i.d.o. – DIST University of Genova

speaker: Christian Vecchiola

Agenda

Introduction

- Grids
- Agents for the Grids
- GrEASe
 - Architecture
 - Lower Layer
 - Upper Layer
 - Use Case

Conclusions

.i.d.o

Grids issues

- Resource sharing
- Resource localization
- Resource storage
- User profiling
- Load balancing
- Administration

12/1/2004

.d.o

Grid environment

- -Complex
- -Heterogeneous
 - -different hardware support on each node
 - different nodes can host different type of reources
- Highly dinamyc
 - -nodes can be added or removed
 - -links can be added or removed

12/1/2004

.d.o

Grids types

i.d.o

- Computational Grids
 object: computational power of computers connected to the grid
 - usage pattern: parallel and distributed algorithms
 - -example: SETI@home, gaming grids

Grids types

d o

- Data Grids
 - object: huge collections of data distributed all over the network
 - usage pattern: look for documents (image, text) that match some user defined criteria
 - -example: bio-informatic grids

Grids types
 Service Grids
 -the object is a service
 -usage pattern:

 look for a particular kind of service
 build a composed service from the existing ones

 -example:

 multimodia

- multimedia

i.d.o

Agents for the Grids

-Agents features

-autonomous

-reactive

.i.d.o

-proactive

-social ability

flexible behaviour (intelligence)

Agents for the Grids

- Multi-agent systems
 - social ability is one of the most important features of agency

agents interact by means of

- competition
- negotiation
- cooperation
- in order to better exploit this skill agents are arranged in communities called multi-agent systems (MASs)

12/1/2004

. d. o

Agents for the Grids

- Are these features valuable into a grid environment?
 - agent technology has been conceived for complex and highly dynamic systems
 - proactivity and reactivity become crucial in this kind of contexts where the single nodes need to adapt to:
 - the mutating conditions of the grid topology
 - the different load during their life cycle
 - social ability is important too:
 - cooperation is fundamental in resource discovery
 - cooperation and negotiation are winning practice for resource aquisition

12/1/2004

i.d.o

Agents for the Grids

Some examples

- A4 methodology [J.Cao, CCGrid 01 02]
 - agents dynamically adapt to the conditions of the grid
 - agents are homogeneous and organized hierarchically
- MyGRiD [Moreau et al, CCGrid 03]
 - provides a collaborative environment for biologist researchers distributed in all the world
 - uses SoFAR as implementation technology
- Bond Agent Systems [L. Boloni, CIPC 03]
 - extends the JADE framework with specific behaviours that abstract grid services

12/1/2004

i.d.o

GrEASe

Grid Enviroment based on Agent Services

GrEASe defines a grid enviroment

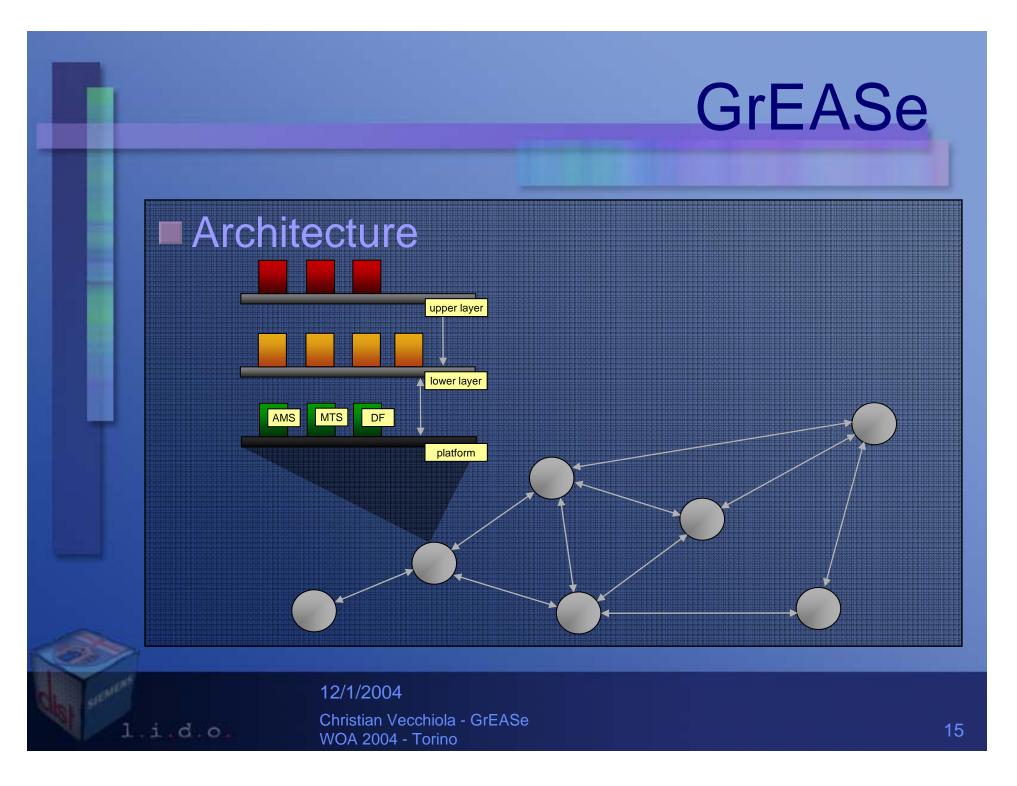
GrEASe uses the agent technology in order to define a simple, clear and easy to manage grid architecture. GrEASe strongly relies on the feature of agency in the design of the different components of a Grid

12/1/2004

l.i.d.o

Features

- Based on the AgentService programming framework
- Uses a different approach to apply agents to Grids (functional decomposition)
 - Identifies all the core functionalities that characterize the system
 - Defines a role for each set of functionalities that make up a service
 - Defines an agent for each role previously identified
- Models the entire Grid as dynamic and distributed multi-agent system


12/1/2004

.i.d.o

Architecture

- Each node is defined by an instance of the AgentService programming platform
- The instance of the platform host the portion of the multi-agent system related to the node
- Each node is organized into ...
 - -lower layer
 - -upper layer

d. 0

Node Architecture

-Lower Layer

- Core functionalities of each type of grid
 - Node management
 - Topology management
 - Resource discovery
 - Authentication
 - Data transfer
 - User interface

 One to one mapping beetween this services and the agents belonging to this layer

12/1/2004

i.d.o

Lower Layer

i.d.o

- -NodeManager
 - -Takes care of the list of the shared resources
 - -It is the access point to the node
 - Delivers requests that it cannot handle to the other agents of the node

Lower Layer

- Dispatcher
 - Handles the information about the topology of the node and neighbour nodes
 - Forwards outgoing queries to the dispatchers of the neighbour nodes able to handle them
 - Handler incoming queries by forwarding them to the neighbour dispatchers or to the NodeManager of the node

12/1/2004

d o

Lower Layer

- ResourceProvider
 - -Can be more than one for each node
 - Handles a subset (if not alone) of the resources of the node
 - Allocation status
 - Temporary owner
 - Interacts with the upper layer agents that are bound to the specific resources handler by the provider

12/1/2004

. d. o

Lower Layer

-Carrier

-Handles the transfer of data among the nodes

Uses different protocols in according to

- The peer node
- The type of the resource

 Interacts with the NodeManager to coordinate the delivery of a resource to the client

12/1/2004

i.d.o

Lower Layer

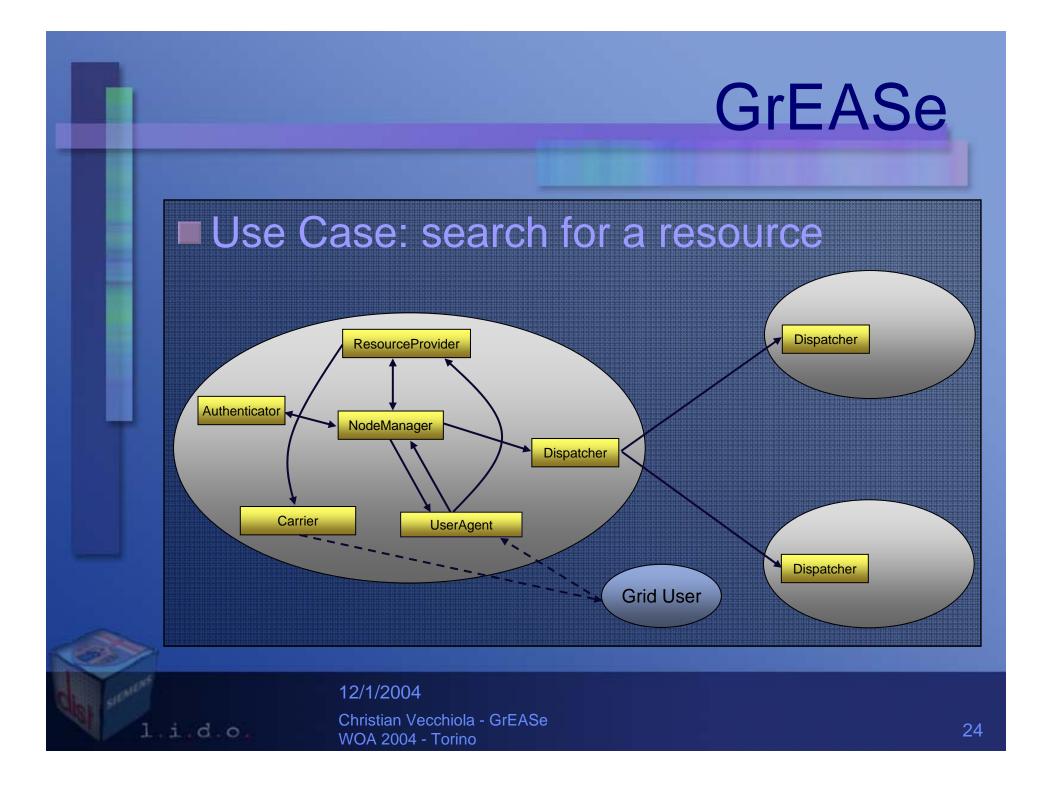
i.d.o

- -Authenticator
 - -Verifies the credential of end-user that want to access the grid (first level of authentication)
 - -Gives the user access to the specified resource in according to its security profile (second level of authentication)

Lower Layer

- -UserAgent
 - Represents the user into the multi-agent system hosted into the node where the user has logged in
 - -Not present in all the nodes
 - Acts like a proxy of the user and handles all his requests
 - -Created at user login, destroyed the at logout

12/1/2004


i.d.o

Upper Layer

- -Grid type specific agents
 - Different agents have to be designed in order to deal with the nature of resources
 - computation
 - data
 - services
 - They share a common set of behaviours that are used to interact with the resource provider

12/1/2004

i.d.o

Conclusions

Some considerations

- Agent Technology can be an interesting approach to grid computing
- The use of functional decomposition lead to..
 - an intuitive, modular organization of the system
 - -.. a system easy to mantain
 - -.. a new a approach

12/1/2004

_d.o

Conclusions

Future enhancements

- Integration and interoperation with existing grid systems (OGSI in particular)
- Improvement of
 - the routing technicques used by Dispatcher agents
 - the authentication method of Authenticator agents
 - -the number of protocols used by Carrier agents

12/1/2004

Thanks for the attention...