
SIMULATION IN THE TEXTILE INDUSTRY:
PRODUCTION PLANNING OPTIMIZATION

Gianluigi Ferraris
University of Turin

Email: ferraris@econ.unito.it

Matteo Morini, corresponding author
University of Turin and LABORatorio ’R. Revelli’

Email: matteo.morini@unito.it

Abstract— The work being introduced is aimed at supporting
the crucial activity of deciding what is to be done, and when,
within an industrial, applied, real-world situation. More specif-
ically: matching assorted tasks to applicable production units,
and deciding the priority every job is to be given. The problem,
common to many different industries, arises when a considerable
amount of different articles must be produced on a relatively
small number of reconfigurable units. Similar issues have a
strong impact on an essential concern, eminently in the textile
industrial domain: satisfying the always-in-a-rush customers,
while keeping accessory production costs (set-up costs, machinery
cleaning costs, . . .) under control, keeping at a minimum the
losses related to wasteful resource-management practices, due to
“under pressure” decision making.

Given the real-world situation, where human planners tend to
be the only ones considered able to tackle such a problem, the
innovation hereby suggested consists of an automated, artificial
intelligence based, system capable of objectively driving the
search and implementation of good solutions, without being
influenced by pre-existing knowledge, mimicking a powerful
lateral-thinking approach, so difficult to accomplish when man-
agement pressure impedes and daunting tasks bound the human
rationality.

Ranking the effectiveness of a candidate solution, where path-
dependency and unexpected complex effects may bias the final
outcome, is not a matter trivially manageable by traditional
operational research-style systems where no dynamics (recur-
sive phenomena, feedbacks, non-linearity) appear. In order to
overcome the limitations that an analytical specification of the
problem imposes, the Agent-Based Modelling paradigm had to
be taken into consideration.

Thanks to ABM we’re provided with the opportunity of “in-
silico” experimenting every imaginable scenario, by executing the
planning in a virtual lab, where the production events happen
instead of simplistically being computed. In this way we avoid
following a reductionist approach, clumsily based on the usage
of a static representation of the enterprise world, squashed into
a cumbersome system of equations.

The model have been built resorting to the Swarm toolkit
(see [Bur94], [JLS99], [MBLA96]); the underlying programming
language (Objective-C) made the procedure of mapping the
agents involved in the process onto software objects a plain and
consistent task.

The problem presented belongs to the “shop problems” family
in general, although many peculiarities make it an unconventional
and distinguished one. When referring to “production planning”,
the authors have in mind the scheduling problem rather than
ERP/MRP issues. In fact, the stage of the production on which
the work is focused gives the availability of raw and semi-
finished materials for granted. The up- and down-streams of the
supply chain are normally performed by significantly oversized
equipment, in the textile industry. On the other side, “core”

processes, spinning and weaving in particular, require peak
exploitation of the available production units.

KEYWORDS:

Production, Scheduling, Optimization, Industrial Processes,
Manufacturing

I. THE PROBLEM

Matching tasks to units, under additional constraints, is the
key issue. While certain constraints are to be regarded as
“hard” (let’s think of a technical issue rendering some of the
production units useless in working on particular a (sub)task,
thus reducing the set of available units), others are “soft”
constraints: different units perform better on certain tasks,
whereas others can suboptimally do, maybe with worse (yet
acceptable) results, or take a longer time.

The sequencing of tasks is, on the other hand, one of the
degrees of freedom of the problem, being the choice of giving
priority to one task driven by timely delivery constraints.

For the sake of readability in this paper the words “order”,
“task”, “job” will be used interchangeably.

A. Minimizing the production overall cost

Different production plans result in varying (aggregate)
production costs. Each evaluation in terms of costs is made
by adding several components: some of them are costs in a
proper sense, others are more like abstract values by which we
try to capture the economical impact of undesirable situations.
Examples of the first kind are the setup costs; on the other
hand delayed deliveries are certainly unwanted, even if not
directly expressible as economical losses. Being considered an
unreliable supplier because of repeated delays, in the long run,
leads to unsatisfied customers being lost. This is, of course, an
hardly economically quantifiable loss: it depends on how the
firm’s management perceives the importance of reliability, and
how strongly is feared the risk of losing a repeatedly “deluded”
customer.

B. Textile technicalities explained

The simulation is performed on and limited to, for the
sake of simplicity, one of the production chain tasks only:
proper spinning. Previous and successive operations can be
overlooked, since they normally take place in oversized depart-
ments. Warping and combing, for instance, require relatively
inexpensive machinery to be completed: it is common practice

to buy extra units ’just in case’, since most of the plants
value comes from spinners. The department where extreme
care must be taken in avoiding any bottleneck effect is the
spinning room.

We may confidently say that, should a good production plan
be found for the spinning, the raw materials availability could
be taken for granted, and the operations due to be performed
up- and downwards the production chain could be arranged
easily, not acting as constraints.

Finding a good production plan often implies dealing with
mutually exclusive goals, in situations ridden with trade-offs.
The only reasonable way to manage so many different aspects
simultaneously is to reduce everything to its economical
meaning, and it is hardly a straightforward task.

1) Production units setup: Spinners are complicated ma-
chines that can be adapted to produce many different kinds
of yarns: apart from technical-mechanical parameters that can
be tuned (speed, crossing angle, twisting. . .), each head (see
Glossary) can be set up, by physically substituting some
parts, to make for a wide range of technical specifications.
Every kind of yarn features specific technical parameters and
may require different parts to be mounted. At least three
families (each one made by three types or more) of mechanical
parts must be kept into account: cards, rotors, nozzles (see
Glossary).

The act of setting up a spinning unit in order to have it ready
to produce a certain kind of yarn may take a considerable
amount of time: up to three hours may be spent removing and
re-inserting a big amount of different mechanical parts, apart
from trimming the appropriate software controls.

Of course putting similar products in sequence saves setup
time: the least different two lots put in sequence are, the
simplest and quicker the setup operations will be.

SCi,j = f(ṗ1,i,j , ṗ2,i,j , . . . , ṗN,i,j)

The setup cost SC for order i placed after order j (or on
a stopped production unit) depends on the dummy variables
p{1<n<N},i,j : each of them expressing the fact that the spinner
part enumerated as the n-th (out of N) needs being exchanged
when order j comes after order i (regardless of the spinner
involved).

This seems a good enough reason to keep similar, if not
identical lots, together, sticking them one after another. We’ll
see later why it’s not that simple.

Nevertheless, the cost of setup can simply and accurately
be accounted for in terms of man/hours spent performing the
operation: after all, it consists of a sort of opportunity cost.

2) Timely delivery: Each order the firm is asked to produce
is labelled with an “expected delivery date”: customers are
promised their yarn will be ready to ship by an approved
calendar date (sometimes stringent conditions are imposed by
“big” buyers), which they expect to be reliable. Should the
delivery constraints be missed, a disappointed customer would,
to say the least, complain bitterly. We have a situation which
is very difficult to express in economical terms; very seldom a

penalty is contractually established, rather the firm reputation
is at stake, and the risk is to lose customers.

In order to keep into account, besides of the setup constraint
(“less is better”), this additional constraint, a figurative cost has
been introduced. It consists of an amount of money associated
with the delay and the importance, positively correlated with
both: the longer the delay and the bigger the order, the higher
the (not-so-metaphorical) cost to be charged. Expressed in
symbols:

DCi = f(d+

i , w+

i)

where the delay cost DC for order i grows as the delay d and
weight w (in kilograms) grow.

It becomes clear that sequencing similar orders on the same
spinner is not an option: the freedom to save setup costs is at
odds with the need to satisfy the timely delivery condition. A
simplified example is presented (see Appendix, gantt sample).

3) Simultaneous setups, patrolling: To make things even
worse (and almost impossible to deal with “by hand”, which is
nowadays the only viable way available to enterprises) further
constraints are to be kept into account.

Production units setups, for instance, are performed by
specialized workers; the number of setup teams available is
limited, thus limiting the amount of setup operations which
can happen at the same time. The effect of a missed setup
(because of the unavailability of a team) on the production is
simply a delay in the production of the order: no setup can
be performed until one of the busy setup teams is available
again. The total production time, and the time the order will
be ready to ship, will be determined by the actual production
time plus the initial delay.

Other employees are committed to the so-called spinners
“patrolling”: they are required to follow the ongoing produc-
tion, ready to fix any problem should occur. A patroller is
normally assigned 4 to 6 spinners to watch; the complication
here arises from heterogeneity in the behaviour of different
spinners: every different yarn features a specific likelihood to
create (generically speaking) problems, that is to draw more
or less attention from the patrollers. A patroller will be able to
follow productions that are problematic up to a certain point:
the average must be kept below this critical point. Above the
limit, production times will grow (in a more or less foreseeable
way) for all of the spinners under the overloaded patroller.

An index of “problematicity” is needed in order to manage
such a subtle issue. The patroller load PL corresponds (for the
n-th patroller) to the sum of the “problematicity index” p for
each order i multiplied by the number of heads, h, available
on the spinner j.

PLn =

S∑

i=1

hipj

Index PL is normalized in order to have 1 as the maximum
tolerable patrolling load. Above this load, orders production
times increase by empirically determined amounts:

PL ∆PT

0 < PL ≤ 1 0 normal load
1 < PL ≤ 1.2 +10% slight overload

1.2 < PL ≤ 1.5 +25% severe overload
PL > 1.5 > +25% unacceptable overload

PT = production time

C. Evaluation by simulation

In order to evaluate the alternative candidate production
plans, being able to rank them by “goodness”, it takes a
metric: a measurement of their own figurative cost. Such an
operation needs to take into account the intrinsic complexity
of executing the plan: each decision taken with regard to
the assignment of a certain task conditions the subsequent
decisions. While executing a plan two dimensions come into
place: time and space; its evaluation cannot overlook this
crucial assumption. Setup teams, for instance, may grant a
total availability, compatibly with daily timetables, yet this
can be suboptimal if compressed in a limited amount of time:
queues tend to form.

A simulation was introduced, based on the enterprise de-
sign, which let us overcome the hard - if not impossible -
problem of keeping track of such effects in the accounting.
By simulating, all the production events are “made happen”:
formation of queues, delays, interaction among entities emerge
spontaneously and are accounted for, when evaluating the total
cost. This way avoids introducing tricks and approximations
such as assigning pre-digested costs to unforeseeable events,
using average (yet reliable?) values that render the accounting
less accurate.

Exploiting a simulation also gives the advantageous chance
to experiment with unlikely settings, or hard to observe in real-
world situations. The need to evaluate by traditional compu-
tational techniques a production unit breakdown, for instance,
one would be compelled to resort to an average “expected
time between failures”: this implies accepting two unrealistic
assumptions, that we deal with a continuous phenomenon,
and that the events are evenly distributed. By simulating,
randomly occurring (and randomly lasting) events can be
generated, while keeping probabilities within a pre-defined
range: instead of an unrealistic continuous distribution we are
correctly working on discrete events, with different durations.

An accurate cost tracking and accounting is instrumental to
a good final result: the figurative cost of each plan enters the
solutions generator (the genetic algorithm), where it is used to
evolve subsequent generations of solutions. Even small distor-
tions may disrupt the search process towards inefficient regions
of the solutions space, prolonging computational times and
considerably worsening the quality and reliability produced
solutions.

II. EXPERIMENTING SOLUTIONS

A. Agents: a local definition for an umbrella-term

The wealth of definitions and interpretations that coexist
when “agents” come into play calls for a clarification: the

agents hereby presented are to be intended as interacting no-
minded software objects (in the Object-Oriented programming
sense), whose main role is to encapsulate data, to make
(mostly basic) computations and to pass informations back
and forth. There is no communication protocol specification
apart from the well-known getters/setters; the Swarm toolkit is
used as an useful framework (see also [LS00a], [Ter98]) where
software agents perform actions in a (perhaps sophisticated)
time sequence by means of a scheduler triggering events, in
this specific case in a deterministic way.

B. An Enterprise to experiment upon

The Enterprise Simulator is the module where solutions
are experimented, that is where the simulation takes place.
A model of the supply chain under scrutiny is used in order
to watch candidate plans ’happen’: the production process
is represented in abstract, resorting to representative agents.
Production units agents, setup agents, patrollers agents have
been developed with the aim of giving simple yet exhaus-
tive representations of their respective roles. Even production
orders are embodied by dumb agents: objects encapsulating
all the informations pertaining to the tasks to be performed,
which are bounced between proper agents that act based on
the informations they achieve from the orders themselves.

Presenting how the process takes place in the model is out of
the scope of this paper; the steps - in a way absolutely adherent
to the real process - implemented are: orders reception (in
batch), orders dispatching to production units (filling queues),
PUs setups, involving setup time computation after setup teams
gathering, patrollers capacity reservation, production, repeat.

Ongoing and predetermined orders, already loaded on PUs
and/or already due, are completed before initiating the candi-
date plan evaluation.

III. INVENTING SOLUTIONS (ENTER THE GOLEM)

To find a good planning solution, given the enormous1 set
presenting itself, a Genetic Algorithm has been implemented,
based on the well known AI paradigm first introduced by J.
Holland (in [Hol75]).

The idea was to emulate the natural evolutionary process
performing reproduction and death of structures that are rep-
resenting a strategy. Provided that a whole set of structures
is normally called “the population” of the GA, each of them
is analogously named “an individual”; each one encodes a
strategy into a binary string called “a genome”. After having
created an initial random set of structures, each of them is
evaluated, one item at a time, by performing the strategy it
represents, encoded, into an appropriate simulated environ-
ment. In this way a serial2 evaluation of each structure can be

1An average spinning mill needs to plan about 50 jobs onto about 15
spinners at a time, which results in circa 10

67 different feasible schedules.
The weaving industry involves even bigger figures: up to 100-120 jobs to plan
on 50-60 weavers, giving 10

120 schedules.
2The process of evaluating populations is intrinsically parallel, being the

population refresh step the only “pivot” operation which needs to wait for
the completion of the individual-by-individual fitness assignments. For an in-
depth presentation of the authors’ works in this direction, see [Mor04], and
thereafter in this article.

performed, in order to assign every strategy a value measuring
its goodness: the so-called fitness of the individual. When the
whole set has been evaluated, an evolution step can be taken:
each individual is assigned a probability to reproduce itself
(give birth to “offspring”) and a probability to die, according
to its fitness value: better-fitted genomes are assigned a higher
probability to reproduce and a lower probability to die, and
vice versa. Reproduction is made by copying and crossing
two individual’s genomes to obtain a couple of new structures
to put into two new individuals; these newborn individuals
will replace two old structures selected - from the previous
generation - to die. By performing this algorithm in a loop
the population becomes more and more fitted and the better
types tend to spread into the population. The GA method is
very useful when a wide set of alternatives has to be explored:
it is general-purpose, it does not require any previous coded
knowledge about the problem and it allows finding reasonable
solutions in a short time.

To face the scheduling problem a special, but general,
implementation of a GA has been employed. The goal was
to set up a boosted GA, able to handle individuals composed
by more than one structure, and structures defined on a very
large alphabet. Another requirement was that this special
implementation of a GA, the Golem, needed to handle special
structures where all the alphabet symbols appeared only once3.

The decision to write a special GA was due to the peculiar-
ities of the problem to tackle. Each candidate strategy aimed
to solve it can be split into two parts:

1) which machine will have to make an order
2) which priority will be assigned to each order

The two parts interact between each other in a complex way
so the goodness of a solution depends on the goodness of each
of them, but it is not possible to determine the contribution
of each part to the performance of the solution. Both have to
be evaluated simultaneously. Unless that, the contents of each
part are very different and they could be coded in a highly
different way. The first part could be expressed by a sequence
of numbers, each of them identifies a unit, whereas the position
of each code number identifies the order to be made. Adopting
the same structure for the priorities the problem to assign
univocal values to each order has to be faced. In addition
the code numbers are defined on a set which cardinality is
given by the number of machines the enterprise owns, while
the cardinality of the priority set is defined by the number of
orders the enterprise is going to plan. Resorting to the standard
two-symbol (0, 1) alphabet would have caused an ineffective
representation of the solutions space, given the problem to
represent each number in binary code every time the number
of orders, or the number of machines, is not a power of two.

The Golem tackles the aforementioned issues by allowing
the user:

1) to decide independently for each genome how many
symbols need to be used by the coding alphabet, i.e.

3The so-called “univocal” genomes, where every symbol representing a job
must not be repeated nor left out of every perspective solultion.

how many different values will be used in it
2) to decide a different length for each genome, i.e. how

many positions it will include
3) to handle genomes where each symbol of the related

alphabet will appear only once.

In addition the Golem was written taking into consideration:

1) the robustness of the methods exposed to the user, who
can hardly misuse them

2) the efficiency (performance-wise) of the program

The Golem features methods to let the users’ applications
smoothly handle and control the search process. The user
has simply to define the structure of the strings/individuals
by coding the number and specific parameters for each of
them: type (univocal or random), length, alphabet cardinal-
ity. The application (the Enterprise Simulator in this case)
can conveniently interact with the Golem, demanding for
an individual to evaluate and, after having performed the
evaluation, returning the fitness value to the Golem. When all
the population’s individuals have been evaluated, the Golem
automatically performs the evolutionary step. The Golem code
has been optimized to ensure a high performance level, and
has been regression–tested versus the earlier, more readable
versions.

IV. EXPERIMENTING INVENTED SOLUTIONS, ERGO

SUGGESTING THE GOOD ONES

The evolution process performed by the Golem is driven
by evaluating each single candidate solution appearing in the
GA population. The production plans require an estimation
as accurate as possible, incorporating every element of the
dynamic interaction characteristic of the enterprise operations.
It is the existence of such relationships among the intervening
parts which distinguishes the problem as one of a complex
kind: the aggregated outcome differs from what is obtained
by the single components.

Keeping in mind the facts mentioned above, the un-
feasibility of operating by decomposing the problem in parts is
self-evident: the interactional effect would be totally missed;
likewise, resorting to mathematical functions, static by their
own nature, would imply neglecting all the time-related fea-
tures, which are fundamental when it comes to plan actions
intended to happen over time, being themselves subject to
scheduling.

Computer simulation, by allowing management facts to hap-
pen in an artificial laboratory (the enterprise model), permits to
quantify and express costs, whether figurated or not, generated
by each candidate schedule, accurately and significantly, in
order to promote the search for the best solution to the given
problem.

The very same tool can be exploited in performing what-
if analyses driven by human decisions, in order to rank GA-
made solutions; this allows comparing what’s produced by the
human heuristics versus what’s suggested by AI techniques,
in a straightforward way. Plausibly it’s the only viable method
to provide a shared metric which permits, given the amplitude

of the problem, to decide whether the search direction is a
productive one or not.

In order to exploit the enterprise simulation to these pur-
poses, the modelled objects are required to act as a bridge
between the (scheduling) plan from the inferential method (the
Golem) to the enterpreneurial metric.

In designing the Golem, that concerning this activity is
just one of the advantages aimed at: the chance to use an
extended (symbolic) alphabet solved some coding issues that
during the first trials performed by standard AGs hindered
the search process. An alphabet restricted to binary digits
forces production units and orders number to be expressed by
grouped symbols (as many as needed in order to the maximum
value in the definition domain to fit); wherever the defined
domain is less dense than the set of the natural numbers (when
dealing with orders classified by differentiating their number
by thousands or tenths of thousands, for instance), several
non-significant solutions may appear. In such circumstances
translation algorithms need to be employed, which, keeping
such unfavorable factors into account, operate extraneous
transformations (i.e. back-and-forth remapping) unknown to
the AG; in the worst cases the same value gets assigned to
formally different structures. Such behaviours can sensibly
mislead the solutions learning and refinement process, keeping
effective results from being efficiently achieved: execution
times may stretch considerably.

A further issue emerged from the orders execution priorities.
A standard GA in this case tended to produce non-univocal
outcomes: the same priority may have been assigned to several
different orders. Artificially differentiating equal values, based
on the position within the structure for instance, might have
impaired the GA abilities also in this situation. The system
would have somehow been “deceived” by such artifacts. Pro-
viding the ability to opt between different operators, applicable
to different kinds of genomes, the Golem could solve this issue
too.

Achieving reasonable solutions quickly is fundamental to
the enterprise: by analysing the experimental results a loga-
rithmic trend of the solutions goodness have emerged clearly,
functional to the number of evolutions performed. Practically
speaking, the Golem is able to rapidly improve the solutions
during the early stages of learning, while its productivity
decreases as the optimum is approached. Going for popula-
tion convergence appeared a suboptimal behaviour: halting
the system after a certain number of evolutions seems way
better than comsuming a long time in exchange for marginal
improvements.

V. PRELIMINARY RESULTS

Although the system hereby presented is, from a develope-
ment standpoint, mature, its adoption at a production stage by
the pilot plants involved is at its early phase. Nevertheless,
batteries of tests on real-world data have been thoroughly
performed.

The typical set-up involved sampling batches of orders from
a random date in the past (picking up real-time fresh data

very seldom, for reasons to be explain afterward). The results
obtained were measured against random plans (averaged over
multiple runs with different random seeds), against an ingen-
uous strategy4, against human solutions.

The system has been evaluated at various stages of the
search: although only after a 5-minutes run on an ordinary
desktop PC (details in Appendix) the proposed solution is
already better then the human-made, the performance level
(the costs saved) improves quickly, yet asymptotically (see
fig. 1).

A systematic comparison between results is hard to perform:
historical data on previous production plans isn’t always
available; asking human planners to re-evaluate prior data sets
is very likely to lead to biased solutions; the same happens
with “live” data. Additional problems associated with hard-
to-extract implicit knowledge are very likely to arise, when
dealing with real-world situations. This has been kept into
account, and comparisons have been performed both against
ad-hoc solutions on datasets expressly and silently submitted
to human planners and historical data, when available, hoping
to level out bias.

Early - yet consistent - results have been presented and
discussed with managers and experts, and they clearly show
the superiority of the system presented. In the following table,
results are shown as an indicator normalized versus the human
performance (made equal a hundred), and represent the overall
costs kept into account by the system, which of course neglects
exogenous costs.

random 100.00
pseudo-FIFO (see note 4) 92.05

human 82.27
5’ run 68.75

30’ run 62.25
6h run 60.62

VI. CONCLUSIONS

Production planning constitutes a typically complex prob-
lem: the interacting parts taking part in the process makes
impossible the application of traditional search procedures,
based for most part on the decomposability of the problem
as a prerequisite.

Given an (although limited) number of tasks to schedule,
even the plain enumeration of the possible solution becomes
practically unfeasible, given the combinatorial explosion im-
plied. In this scenario the limits of applying heuristics based
on human experience have appeared: the human mind attempts
to solve the problem operating on limited subsets at a time,
implicitly decomposing the complex problem, thus missing an

4The strategy, which is an oversimplification of the human way of schedul-
ing jobs, consists of a sort of modified and refined “First-In-First-Out” method:
jobs are appended to jobs with similar set-ups requirements that are already
in queue on a given production unit; jobs with different set-up requirements
are scheduled either on free PU’s, if any, or the first PU expected to become
available.

overall view on it. Every single decision taken on the assign-
ment of a task onto a production unit constitutes a sensible
“cut-off” on the solutions space, resulting in neglecting the
exploration of large areas.

Implementing GAs let us exploit their implicit parallelism,
both from a computational and an investigative point of view:
starting from randomly generated solutions, avoiding pre-
digested strategies, the GA also considers solutions that would
be rejected by a human solver as absurd ones; not seldom
innovative ideas are found among such apparently suboptimal
candidates, and they are the ones that give superior results.

Apparently this is the main reason for the superiority of the
system with respect to the human approach. It demonstrates
itself far superior both in computation duration - efficiency -
and final results - efficacy.

The system put into place constitutes, though, just a starting
point: ways to improve the efficiency are being investigated
and experimented, by distributing the “thinking” part of
the work, the simulation, on several distributed nodes of
a computer network, drastically incrementing the degree of
parallelism of the computational process. At the same time
work is being done on making the inferential engine (the
Golem) more powerful, by introducing even more dramatic
variations with respect to the standard GA’s. The ongoing
tests concern: clustered, cooperating GA’s, and GA’s featuring
varying populations and variable-length individuals.

GLOSSARY

A brief list of technical terms relevant to the textile industry.
head: one of the (tenths to hundreds of) elements working

on a single thread, constituting a spinning mill.
card: a toothed brush used to disentangle fibers.
rotor: a rotating device used in transporting fibers.
nozzle: a v-shaped element through which air flows.

APPENDIX

• Gantt example:

Customers a and b demanded, respectively, for [A1, A2] and
[B1, B2]. Orders A1 and A2 are, from a technical standpoint,
similar, and require a negligible setup time between them. B1
and B2 are also very similar. Ignoring (by now) the delivery
constraints the obvious plan is to sequence similar orders on
the same spinner (solution i):

spinner # t0 t1 . . . tn

1 A1 q-A2
2 B1 q-B2

. . .

The two customers, on the other hand, have different timing
requests: a needs A1 and A2 as soon as possible; b is not
pressing very much for a quick delivery and is fine for him to
receive B1 and B2 by a later date. The most appropriate plan
in this case would appear as follows (solution ii, grid entries
changed from solution i have been italicized in order to let
them stand out):

Fig. 1. Evolution of solutions in successive generations, over time

spinner # t0 t1 . . . tn

1 A1 l-B1
2 A2 l-B2

. . .

The small letters preceding the second orders are meant to
show the different setup times required in both situations: as
expected, q stands for ’quick’ setup, l for ’long’ setup.

Even in an oversimplified situation like the one described
above, the complicated management of incompatible con-
straints appears; what makes solution i preferable over ii are
the actual setup and delivery “costs”, which must be accounted
for as accurately as possible.

• Experimental set-up: technical details

The experimental gear used consisted of a rather aged
desktop PC equipped with a single 800-Mhz Pentium-III CPU
and 256 MB RAM. The amount of available memory becomes
relevant when the GenomaBucket solutions caching system
comes into play. It is beyond the scope of this article to present
it; refer to [Mor03] for details.

REFERENCES

[AE94] R. L. Axtell and J. M. Epstein. Agent-based modelling: Under-
standing our creations. Bulletin of the Santa Fe Institute, 9(2),
1994.

[Axt99] R. Axtell. The Emergence of Firms in a Population of Agents.
Brookings Institution, Washington, 1999.

[Axt00] R. Axtell. Why Agents? On the Varied Motivations for Agent
Computing in the Social Sciences. Center on Social and Eco-
nomic Dynamics, November 2000. Working Paper No. 17.

[BMVf] S. Bandini, S. Manzoni and G. Vizzari. Multi Agent Systems
in Computer Science: Focusing on MAS Based Modelling and
Agent Interaction, EXYSTENCE Thematic Institute for Com-
plexity and Innovation, forthcoming.

[Bur94] R. Burkhart. The Swarm Multi-Agent Simulation System, Posi-
tion Paper for OOPSLA ’94 Workshop on “The Object Engine”,
http://www.swarm.org/archive/oopsla94.html

[DG88] J.H. Holland D.E. Goldberg. Genetic algorithms and machine
learning. Machine Learning, 3:95 104, 1988.

[Eps96] J. M. Epstein. Growing Artificial Societies. Brookings Institution
Press,Washington, D. C., 1996.

[Eps99a] J. M. Epstein. Agent-based computational models and generative
social science. Complexity, 4(5):41 60, 1999.

Fig. 2. Architectural overview

GA

E S

GB

D B

Data interfaces:
- W eb fo rm s
- X M L u p l o ad
- L eg acy E R P
- . . .

[Eps99b] J. M. Epstein. Learning To Be Thoughtless: Social Norms and
Individual Computation. Center on Social and Economic Dynam-
ics, September 1999. Working Paper No. 6.

[Fer01] G. Ferraris. GAMES: Algoritmi Genetici per l’Economia. Num-
ber 51 in Quaderni del Dipartimento di Scienze Economiche e
Finanziarie G. Prato . Universit degli studi di Torino, Facolt di
Economia, March 2001.

[GT00] N. Gilbert and P. Terna. How to build and use agent-based models
in social science. Mind & society, 1(1), 2000.

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge, MA, 1975.

[Hol98] B. Holmstrom. The firm as a subeconomy. In Bureaucracy: Issues
and Apparatus, October 1998.

[HR99] M. Harris and A. Raviv. Organization Design. University of
Chicago, July 1999.

[JLS99] P. Johnson, A. Lancaster, and B. Stefansson. Swarm User Guide.
Swarm Development Group, November 1999.

[LS00a] Francesco Luna and Benedikt Stefansson, editors. Economic Sim-
ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming. Kluwer Academic Publishers, 2000.

[LS00b] Francesco Luna and Benedikt Stefansson, editors. Economic Sim-
ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming, chapter 9. Kluwer Academic Publishers, 2000. F.-
R. Lin, T. J. Strader, M. J. Shaw, Using Swarm for Simulation the
Order Fulfillment Process in Divergent Assembly Supply Chains.

[LS00c] Francesco Luna and Benedikt Stefansson, editors. Economic Sim-
ulations in Swarm: Agent-Based Modelling and Object Oriented
Programming, chapter 10. Kluwer Academic Publishers, 2000. C.
Schlueter-Langdon, P. Bruhn, M. J. Shaw, Online Supply Chain
Modelling and Simulation.

[LTS96] F.-R. Lin, G.W. Tan, and M. J. Shaw. Multi-Agent Enterprise
Modelling. University of Illinois at Urbana-Champaign, October
1996. Office of Research Working Paper 96-0134.

[MBLA96] N. Minar, R. Burkhart, C. Langton, and M. Askenazi.
The Swarm Simulation System: A Toolkit for Building
Multi-agent Simulations. Santa Fe Institute, June 1996.
http://www.swarm.org/

[MT00a] J. P. Marney and H. F. E. Tarbert. Why do simulation? toward a
working epistemology for practitioners of the dark arts. Journal
of Artificial Societies and Social Simulation, 3(4), October 2000.

[Mor03] M. Morini, Penelope Project: Web-Based Textile Production
Planning, SwarmFest 2003, University of Notre Dame, IN.
http://www.nd.edu/swarm03/

[Mor04] M.Morini, Penelope Meets NEMOTE: Distributed
Production Planning Optimization, SwarmFest
2004, University of Michigan, Ann Arbor, MI.
http://cscs.umich.edu/swarmfest04/

[PCG99] M. J. Prietula, K. M. Carley, and L. Gasser, editors. Simulating
Organizations, Computational Models of Institutions and Groups.
AAAI Press The MIT Press, 1999.

[SLS96] T. J. Strader, F.-R. Lin, and M. J. Shaw. Information infrastructure
for electronic virtual organization management. University of
Illinois at Urbana-Champaign, October 1996. Office of Research
Working Paper 96-0135.

[SLS98] T. J. Strader, F.-R. Lin, and M. J. Shaw. Simulation of order ful-
fillment in divergent assembly supply chains. Journal of Artificial
Societies and Social Simulation, 1(2), March 1998.

[Ter98] P. Terna. Simulation tools for social scientists:
Building agent based models with swarm. Journal of
Artificial Societies and Social Simulation, 1(2), 1998.
http://www.soc.surrey.ac.uk/JASSS/1/2/4.html

